Part Number Hot Search : 
ICS830 B18T1 25SC6R8M 160AT LD111 A2S1CSQ 1N6147A 20080
Product Description
Full Text Search
 

To Download 10-FZ06NRA041FS02-P965F68 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y flownpc 0 600v/30a neutral point clamped inverter reactive power capability low inductance layout solar inverter ups 10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 600 v t h =80c 17 t c =8 0c 17 t h =8 0c 44 t c = 8 0c 61 ma ximum junction temperature t j max 175 c buck diode t h =80c 19 t c =8 0c 24 t h =8 0c 32 t c =8 0c 49 t j =2 5c tjm ax 66 150 maximum junction temperature c 600 v rrm t j =t j max t j =t j max a t p limited by t j max a i f v w t j max rep etitive peak forward current power dissipation per diode p tot i frm t j =t j max 20 i fr m condition 9,5 a dc current t p =10ms flow0 12mm housing target applications schematic types features maximum ratings a i fav a 2 s w dc forward current peak repetitive reverse voltage boost inv. diode forward current per diode maximum repetitive forward current i2t-value p tot power dissipation per diode i 2 t copyright by vincotech 1 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y tj=25c, unless otherwise specified parameter symbol value unit condition maximum ratings buck mosfet t h =80c 29 t c =8 0c 35 t h =8 0c 78 t c = 8 0c 118 boost igbt t h =80c 58 t c =8 0c 77 t j 175c v ce < =v ces t h =80c 93 t c =8 0c 141 t sc t j 1 50c 6 s v c c v ge =15v 360 v boost diode t h =80c 17 t c =8 0c 23 t h =8 0c 33 t c =8 0c 50 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm t p limited by t j max pu l sed collector current i cpuls turn off safe operating area 20 2 25 power dissipation per igbt v a v ce dc collector current col lector-emitter break down voltage a t j =t j max i c t p limited by t j max w 60 0 t j = t j max a t j =t j max 150 20 c v a v w a v a v rrm p tot v ge power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak surge current i frm 20khz square wave pul sed drain current i d pulse p tot gate-source peak voltage v gs maximum junction temperature t j max dr a in to source breakdown voltage v ds dc drain current i d power dissipation pea k repetitive reverse voltage c maximum junction temperature t j max 15 0 c storage temperature t stg -40+125 c - 40+(tjmax - 25) clearance insulation voltage creepage distance t op operation temperature under switching condition 36 12 00 tc=25c 272 600 225 w a v maximum junction temperature t j max 175 c gate-emitter peak voltage short circuit ratings copyright by vincotech 2 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,25 1,88 1,95 tj=125c 1,22 tj=25c 1,37 tj=125c 0,70 tj=25c 0,04 tj=125c 0,04 tj=25c 0,027 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,17 k /w tj=25c 1,61 1,7 tj=125c 1,88 tj=25c 320 tj=125c tj=25c 10 tj=125c 10 tj=25c 12 tj=125c 23 tj=25c 0,11 tj=125c 0,12 di(rec)max tj=25c 2333 /dt tj=125c 1808 tj=25c 0,02 tj=125c 0,02 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,16 k /w tj=25c 41 tj=125c 82 tj=25c 2,4 3 3,6 tj=125c tj=25c 100 tj=125c tj=25c 5 tj=125c tj=25c 34 tj=125c 32 tj=25c 11 tj=125c 12 tj=25c 270 tj=125c 293 tj=25c 0,13 tj=125c 0,15 tj=25c 0,07 tj=125c 0,07 20 0,00296 30 600 350 tj=25c tj=25c 44,4 20 10 350 600 480 0 20 10 10 10 100 0 0 10 rgoff=8 thermal grease thi ck ness 50um = 1 w/mk f=1m hz q rr t rr v f i rrm e off q g r ds(on) v (gs)th i gss t r t d(off) e on q gd static drain to source on resistance buck mosfet i dss c iss c oss q gs t d(on) reverse recovered energy reverse recovered charge gate to source charge turn-on energy loss per pulse diode forward voltage buck diode peak rate of fall of recovery current peak reverse recovery current reverse recovery time r thjh input capacitance gate to drain charge output capacitance thermal resistance chip to heatsink per chip i r characteristic values forward voltage thr eshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t value conditions 10 600 bo ost inv. diode 10 10 v v ma re ve rse current a/s c 6530 150 ua v nc na ns mws mws pf k/w erec rgon=8 gate to source leakage current tur n on delay time v ds =v gs rgon=8 gate threshold voltage turn off delay time rise time zero gate voltage drain current total gate charge turn-off energy loss per pulse 0,90 36 360 m a ns 290 v a reverse leakage current i r copyright by vincotech 3 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value con ditions tj=25c 5 5,8 6,5 tj=125c tj=25c 1,05 1,22 1,85 tj=125c 1,29 tj=25c 0,0038 tj=125c tj=25c 600 tj=125c tj=25c 84 tj=125c 84 tj=25c 7 tj=125c 8 tj=25c 204 tj=125c 242 tj=25c 55 tj=125c 90 tj=25c 0,26 tj=125c 0,39 tj=25c 0,99 tj=125c 1,36 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,02 k /w tj=25c 2,23 3,3 tj=125c 2,04 tj=25c 100 tj=125c tj=25c 59 tj=125c 67 tj=25c 21 tj=125c 102 tj=25c 2,53 tj=125c 4,72 di(rec)max tj=25c 9919 /dt tj=125c 5374 tj=25c 0,75 tj=125c 1,45 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,11 k /w a ns a/ s a mws c v % 4 +4,5 -4,5 30 tj=25c 30 0,0012 peak reverse recovery current reverse recovered charge collector-emitter cut-off incl diode turn-on delay time rise time integrated gate resistor gate-emitter leakage current boost igbt gate emitter threshold voltage tur n -off energy loss per pulse q gate e off turn-on energy loss per pulse e on gate charge fall time turn-off delay time collector-emitter saturation voltage t f i ges input capacitance output capacitance c rss c oss c ies reverse transfer capacitance v ge(th) v ce(sat) t d(off) t r t d(on) r gint i ces pf mw/k ns mws nc 75 tj=25c p mw 210 rated resistance power dissipation constant dev i ation of r25 power dissipation 0 480 r/r i rrm t rr q rr 15 15 0 ma na 0 20 v v non e e rec reverse recovery time peak rate of fall of recovery current reverse recovery energy f=1mhz rgon=4 diode forward voltage rev e rse leakage current v f i r boost diode thermistor rgoff=4 v ce =v ge 15 18 30 15 350 rgon=4 600 600 3 5 0 25 tj=25c tj=25c tj=25c 288 470 137 4620 b-value b-value vincotech ntc reference b (25/50) b (25/100) 3884 k tj=25c 3964 k tj=25c f r tj=25c 21511 copyright by vincotech 4 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 1 mosfet figure 2 mosfet typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 0 v to 20 v in steps of 2 v v ge from 0 v to 20 v in steps of 2 v figure 3 mosfe t figure 4 fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v b uck typical output characteristics 0 15 30 45 60 75 90 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 1 2 3 4 5 6 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 90 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 5 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 5 mosfet figure 6 mosfet typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 10 v v g e = 10 v r g on = 8 i c = 20 a r g off = 8 figure 7 fwd figur e 8 fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 10 v v g e = 10 v r g on = 8 i c = 20 a b uck e on high t e off high t e on low t e off low t 0,0 0, 1 0 ,2 0,3 0,4 0 10 20 30 40 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0,1 0,2 0,3 0,4 0,5 0 8 16 24 32 40 r g ( w ww w ) e (mws) e rec high t 0,000 0,0 05 0,010 0,015 0,020 0,025 0,030 0 10 20 30 40 i c (a) e (mws) e rec lowt e rec high t e rec low t 0,00 0,0 1 0,02 0,03 0,04 0 8 16 24 32 40 r g ( w ww w ) e (mws) copyright by vincotech 6 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 9 mosfet figure 10 mosfet typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 10 v v g e = 10 v r g on = 8 i c = 20 a r g off = 8 figure 11 fwd figur e 12 fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of mosfet turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 10 v i f = 2 0 a r g on = 8 v ge = 10 v b uck t doff t don t r 0,00 0,0 1 0,10 1,00 0 10 20 30 40 i c (a) t (ms) t rr high t t rr low t 0 0,0 2 0,04 0,06 0,08 0 8 16 24 32 40 r gon ( w ww w ) t rr (ms) t doff t don t r 0,00 0,0 1 0,10 1,00 0 8 16 24 32 40 r g ( w ww w ) t (ms) t rr high t t rr low t 0 0,0 05 0,01 0,015 0,02 0,025 0,03 0 10 20 30 40 i c (a) t rr (ms) copyright by vincotech 7 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 13 fwd figure 14 fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of mosfet turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 10 v i f = 2 0 a r g on = 8 v ge = 10 v fi gure 15 fwd figur e 16 fwd typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of mosfet turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 10 v i f = 2 0 a r g on = 8 v ge = 10 v b uck i rrm high t i rrm low t 0 5 10 15 2 0 25 30 0 8 16 24 32 40 r gon (  ) i rrm (a) q rr high t q rr low t 0 0,05 0,1 0,15 0,2 0 8 16 24 32 40 r gon ( w ) q rr (mc) i rrm high t i rrm low t 0 3 6 9 12 0 8 16 2 4 32 40 i c (a) i rrm (a) q rr high t 0 0, 0 3 0,06 0,09 0,12 0,15 0 8 16 24 32 40 i c (a) q rr (mc) q rr low t copyright by vincotech 8 r e vision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 17 fwd figure 18 fwd typical rate of fall of forward and reverse recovery cur rent typical rate of fall of forward and reverse recovery current as a function of collector current as a function of mosfet turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 10 v i f = 2 0 a r g on = 8 v ge = 10 v fi gure 19 mosfe t figure 20 fwd mosfet transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,9 0 k/w r thjh = 2,1 6 k/w mosfet thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,13 4,5e+00 0,08 4,4e+00 0,26 1,1e+00 0,13 8,2e-01 0,25 2,4e-01 0,62 1,3e-01 0,18 8,4e-02 0,67 4,6e-02 0,07 1,5e-02 0,32 8,2e-03 0,03 1,1e-03 0,25 1,9e-03 0,09 5,1e-04 buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 20 0 0 4000 6000 8000 0 8 16 24 32 40 r gon (  ) di rec / dt (a/ms) di rec /dt t di o /dt t 0 50 0 1 000 1500 2000 2500 3000 0 10 20 30 40 i c (a) di rec / dt (a/ms) copyright by vincotech 9 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 21 mosfet figure 22 mosfet power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 15 0 c t j = 150 c v ge = 15 v fi gure 23 fwd figur e 24 fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 c t j = 150 c buck 0 40 80 120 160 200 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 35 0 50 100 150 200 t h ( o c) i f (a) copyright by vincotech 10 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 25 igbt figure 26 igbt safe operating area as a function of collector-emitter voltage gate voltage vs gate charge i c = f(v ce ) v ge = f(q g ) at at d = single pulse i g(ref) =1ma, r l =15 th = 80 oc v ge = 15 v t j = t jmax oc buck v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 1 0 2 4 6 8 10 12 14 16 0 50 100 150 200 q g (nc) v ge (v) 120v 480v copyright by vincotech 11 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 1 igbt figure 2 igbt typical output characteristics typic al output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt fi gure 4 fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v b oost 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) 0 20 40 60 80 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 12 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 30 a r g off = 4 figure 7 igbt fi gure 8 igbt typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 30 a b oost e rec high t e rec low t 0 0,5 1 1 ,5 2 0 10 20 30 40 50 60 i c (a) e (mws) e rec high t e rec low t 0 0,5 1 1 ,5 2 0 4 8 12 16 20 r g (  ) e (mws) e off high t e on high t e on low t e off low t 0,0 0, 5 1 ,0 1,5 2,0 2,5 0 10 20 30 40 50 60 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0, 3 0 ,6 0,9 1,2 1,5 0 4 8 12 16 20 r g ( w ww w ) e (mws) copyright by vincotech 13 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 30 a r g off = 4 figure 11 fwd figur e 12 fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r g on = 4 v ge = 15 v boost t doff t f t don t r 0,001 0,0 1 0,1 1 0 10 20 30 40 50 60 i c (a) t ( m s) t doff t f t don t r 0,001 0, 0 1 0,1 1 0 4 8 12 16 20 r g (  ) t ( m s) t rr low t 0,00 0,0 5 0,10 0,15 0,20 0,25 0,30 0,35 0 4 8 12 16 20 r gon (  ) t rr (ms) t rr high t t rr high t t rr low t 0,00 0,0 3 0,06 0,09 0,12 0,15 0 10 20 30 40 50 60 i c (a) t rr (ms) copyright by vincotech 14 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 13 fwd figure 14 fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r g on = 4 v ge = 15 v figure 15 fwd figur e 16 fwd typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r g on = 4 v ge = 15 v boost i rrm high t i rrm low t 0 20 40 6 0 80 100 0 4 8 12 16 20 r gon (  ) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 6 0 4 8 12 16 20 r gon ( w ) q rr (mc) i rrm high t i rrm low t 0 20 40 6 0 80 0 10 20 30 40 50 60 i c (a) i rrm (a) q rr high t q rr low t 0 2 4 6 8 0 1 0 2 0 30 40 50 60 i c (a) q rr (mc) copyright by vincotech 15 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 17 fwd figure 18 fwd typical rate of fall of forward and reverse recovery cur rent typical rate of fall of forward and reverse recovery current as a function of collector current as a and reverse recovery current di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 30 a r g on = 4 v ge = 15 v figure 19 igbt fi gure 20 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1, 0 2 k/w r thjh = 2,1 1 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,08 4,30 0,04 6,53 0,12 1,00 0,11 1,19 0,47 0,15 0,53 0,18 0,26 0,05 0,96 0,06 0,08 0,01 0,30 0,01 0,17 0,00 boost t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0 40 0 0 8000 12000 16000 20000 24000 0 4 8 12 16 20 r gon (  ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0 20 0 0 4000 6000 8000 10000 12000 0 10 20 30 40 50 60 i c (a) di rec / dt (a/ms) copyright by vincotech 16 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v fi gure 23 fwd figur e 24 fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc boost 0 50 100 150 200 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) copyright by vincotech 17 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 25 igbt inverse diode figure 26 igbt inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = tp / t r thjh = 2,1 7 k/w figure 27 igbt inverse diode figure 28 igbt inverse diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 oc t j = 175 oc boost inverse diode 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 0 50 100 150 200 th ( o c) i f (a) copyright by vincotech 18 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 1 thermistor figure 2 thermistor typical ntc characteristic typic al ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 40 0 0 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 11 25 )( tt b ertr copyright by vincotech 19 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y t j 125 c r gon igbt 8  r goff igbt 8  figure 1 buck mosfet figure 2 buck mosfet turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = 0 v v g e (0%) = 0 v v ge (100%) = 10 v v g e (100%) = 10 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 20 a i c (100%) = 20 a t d off = 0,2 9 s t don = 0,0 3 s t eoff = 0,3 3 s t eon = 0,0 7 s figure 3 buck mosfet figure 4 buck mosfet turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 20 a i c (100%) = 20 a t f = 2,7 56 s t r = 0,0 1 s switching definitions buck general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 7 5 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % t doff t eoff v ce i c v ge i c10% v ge 10% t don v ce 3% -25 0 25 50 7 5 100 125 150 2,98 3 3,02 3,04 3,06 3,08 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 7 5 100 125 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c10% i c90% -25 0 25 50 7 5 100 125 150 3,02 3,03 3,04 3,05 3,06 3,07 time(us) % t r v ce i c copyright by vincotech 20 r evision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 5 buck mosfet figure 6 buck mosfet turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 13, 98 kw p on (100%) = 13, 98 kw e off (100%) = 0,0 7 mj e on (100%) = 0,1 5 mj t eoff = 0,3 3 s t eon = 0,0 7 s figure 7 buck mosfet figure 8 buck fwd turn-off switching waveforms & definition of t rr turn-on switching waveforms & definition of t qrr (t qrr = integrating time for q rr ) v d (100%) = 70 0 v i d (100%) = 20 a i d (100%) = 20 a q r r (100%) = 0,1 2 c i rrm (100%) = -10 a t qrr = 0,0 8 s t rr = 0,0 2 s switching definitions buck i c 1% v ge90% -25 0 25 50 7 5 100 125 -0,1 0 0,1 0,2 0,3 0,4 time (us) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 7 5 100 125 2,98 3 3,02 3,04 3,06 3,08 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -50 -25 0 2 5 50 75 100 125 3,02 3,04 3,06 3,08 3,1 time(us) % i d v d fitted t qrr -50 0 50 10 0 150 3,02 3,04 3,06 3,08 3,1 3,12 3,14 time(us) % i d q rr copyright by vincotech 21 r evision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 9 buck fwd turn-on switching waveforms & definition of t erec (t erec = integrating time for e rec ) p rec (100%) = 13 , 98 kw e rec (100%) = 0,0 2 mj t erec = 0,0 8 s figure 11 figure 12 buck stage switching measurement circuit boost stage swi tching measurement circuit measurement circuits swi tching definitions buck -25 0 25 50 75 100 125 3 3,05 3,1 3,15 3,2 time(us) % p rec e rec t erec copyright by vincotech 22 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y t j 125 c r gon igbt 4  r goff igbt 4  figure 1 outp ut inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t d off = 0,2 4 s t don = 0,0 8 s t eoff = 0,5 2 s t eon = 0,1 0 s figure 3 outp ut inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 30 a i c (100%) = 30 a t f = 0,0 90 s t r = 0,0 1 s switching definitions boost general conditions = = = i c 1% v ce 90% v ge 90% -50 0 50 10 0 150 -0,2 0 0,2 0,4 0,6 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 10 0 150 200 250 300 350 3 3,05 3,1 3,15 3,2 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 7 5 100 125 0 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c10% i c90% -50 0 50 10 0 150 200 250 300 350 3,06 3,08 3,1 3,12 3,14 time(us) % t r v ce i c copyright by vincotech 23 r evision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 10, 46 kw p on (100%) = 10, 46 kw e off (100%) = 1,3 6 mj e on (100%) = 0,3 9 mj t eoff = 0,5 2 s t eon = 0,1 0 s figure 7 outp ut inverter igbt figure 8 output inverter fwd turn-off switching waveforms & definition of t rr turn-on switching waveforms & definition of t qrr (t qrr = integrating time for q rr ) v d (100%) = 35 0 v i d (100%) = 30 a i d (100%) = 30 a q r r (100%) = 4,7 2 c i rrm (100%) = -67 a t qrr = 1,0 0 s t rr = 0,1 0 s switching definitions boost i c 1% v ge 90% -25 0 25 50 7 5 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 10 0 150 200 3 3,05 3,1 3,15 3,2 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -250 -20 0 -150 -100 -50 0 50 100 150 3,05 3,1 3,15 3,2 3,25 time(us) % i d v d fitted t qrr -250 -20 0 -150 -100 -50 0 50 100 150 3 3,25 3,5 3,75 4 4,25 time(us) % i d q rr copyright by vincotech 24 r evision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y figure 9 output inverter fwd turn-on switching waveforms & definition of t erec (t erec = integrating time for e rec ) p rec (100%) = 10 , 46 kw e rec (100%) = 1,4 5 mj t erec = 1,0 0 s figure 11 figure 12 buck stage switching measurement circuit boost stage swi tching measurement circuit cg is included in the module measurement circuits swi tching definitions boost -50 0 50 100 150 200 250 300 3 3,25 3,5 3,75 4 4,25 time(us) % p rec e rec t erec copyright by vincotech 25 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y version ordering code in datamatrix as in packaging barcode as w/o thermal paste 12mm housing solder pin 10-FZ06NRA041FS02-P965F68 p965f68 p965f68 w/o thermal paste 12mm housing press-fit pin 10-FZ06NRA041FS02-P965F68 p965f68y p965f68y outline pinout ordering code & marking ordering code and marking - outline - pinout copyright by vincotech 26 revision: 1
10-FZ06NRA041FS02-P965F68 10-pz06nra041fs02-p965f68y disclaimer lif e support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by vincotech 27 revision: 1


▲Up To Search▲   

 
Price & Availability of 10-FZ06NRA041FS02-P965F68

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X